When a molecule is broken down into its constituent atoms, these atoms do not have the same properties as the molecule.
We can use an everyday molecule, such as water, H20, to show this property. Water is a liquid with unique properties that stem from its hydrogen bonding. On the other hand, its constituent atoms, hydrogen and oxygen, are not liquids, and have very different properties. Oxygen and hydrogen are both gases; hydrogen is dangerous and very flammable, while we breathe in oxygen throughout our lives. This example illustrates how the atoms that make up a molecule usually have different properties than the completed molecule.
Hope this helps!
I believe it is C. I hope
Answer:
the pressure at c = 0.27 atm
Explanation:
Given that:
number of moles (n) = 1.0 moles
Value of gamma in the monoatomic gas (γ) = 5/3
During an isothermal expansion, the volume at b is = 2.5 times the volume at a ; this implies that:

∴ To calculate the pressure at c from a; the process is adiabatic compression; so we apply:

![\frac{P_c}{P_a}=[\frac{V_a}{V_c}]^{(2/3)](https://tex.z-dn.net/?f=%5Cfrac%7BP_c%7D%7BP_a%7D%3D%5B%5Cfrac%7BV_a%7D%7BV_c%7D%5D%5E%7B%282%2F3%29)
![\frac{P_c}{1.0 atm}=[\frac{1}{2.5}]^{(2/3)](https://tex.z-dn.net/?f=%5Cfrac%7BP_c%7D%7B1.0%20atm%7D%3D%5B%5Cfrac%7B1%7D%7B2.5%7D%5D%5E%7B%282%2F3%29)

Thus, the pressure at c = 0.27 atm
I am a blacksmith, I would know this one. Alright... Aluminum, has a great shine to it, and it looks like silver... Same with tin, except aluminum is super shiny and sleek, while tin has a dull shine to it. Steel, is flat (color-wise), and it has a slight shine to it.
You can find what type of metal it is by color, shine, light reflectance, dullness, and several other properties. Hope I helped you! :)
There are so many different answers to this, so I don't know if you're looking for specifics but this is my personal answer.
Liquid- for drinking
Gases- you inhale gases
Solid- they support your weight, such as chairs