Answer:

Explanation:
We have given number of turns N = 560
Inductance L = 8.9 mH
Current through the coil = 7 mA
Inductance of the coil is given as 
Where N is number of turns I is current and
is flux
So 
Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
Base in your question about the magnetic field of the Earth near the equator where as its almost horizontally to the north and has magnitude of B=0.5x10^-4t, the answer is <span>Velocity of electron will be westwards.</span>
It’s C
Cause Impulse is found by multiplying the force and change in time (which is simply time)
So if you rearrange the equation for time you end up dividing Impulse by force.