Answer:
For example, the CGS unit of force is the dyne, which is defined as 1 g⋅cm/s2, so the SI unit of force, the newton (1 kg⋅m/s2), is equal to 100000 dynes.
Explanation:
Answer:
Electrons are influenced by internal forces.
-On the temperature, density of electrons per unit of volume and relaxation time.
-The temperature
Explanation:
The Drude model neglects interactions between electrons and ions and with themselves. Those interactions (by which we refer as electromagnetic forces) influence in the random movement and freedom of the electron. So, they could be more restricted or could influence in conductivity more.
The deduction of the resistivity comes from the Ohm's law, which states that the Electric field in the material is proportional to the current density of electrons by a constant, which is the resistivity itself. The equation goes as follows:
Where e refers to electron (or the charge of it), τ is the relaxation time (average time between collisions), m is the mass and n is the density of charges (electrons in this case) per volume. However, experimentally resistivity is also dependent on temperature, which actually influence the relaxation time. The thermal energy influence in the behavior of the electrons, making them collide with phonons, have more randomness and reduced mean free path.
There is no diagram below so I can't answer the question
A bolt, all these besides bolt are a combo of simple machines
Answer:
It is explained in the explanation section
Explanation:
When the lift starts going downwards, it will start accelerating downwards. After a while, it will start moving with a constant velocity.
Constant velocity means that acceleration is zero and so the man will not feel any weight loss.
Now, Once the lift achieves constant velocity the acceleration is zero hence he will not experience any weight loss.
However, when the lift is in uniform motion, the lift and the man will fall down with an acceleration(a) that is less than that due to gravity(g) . Thus, the man will feel an apparent weight F which is not equal to zero.