The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;
![T_1 = \mathbf{\dfrac{M \cdot g}{2}}](https://tex.z-dn.net/?f=T_1%20%3D%20%5Cmathbf%7B%5Cdfrac%7BM%20%5Ccdot%20g%7D%7B2%7D%7D)
Which gives;
![M \cdot g = \mathbf{T_2 \cdot cos(37 ^{\circ})+ \dfrac{M \cdot g}{2}}](https://tex.z-dn.net/?f=M%20%5Ccdot%20g%20%3D%20%5Cmathbf%7BT_2%20%5Ccdot%20cos%2837%20%5E%7B%5Ccirc%7D%29%2B%20%5Cdfrac%7BM%20%5Ccdot%20g%7D%7B2%7D%7D)
![T_2 = \dfrac{M \cdot g - \dfrac{M \cdot g}{2}}{cos(37 ^{\circ})} = \mathbf{\dfrac{M \cdot g}{2 \cdot cos(37 ^{\circ})}}}](https://tex.z-dn.net/?f=T_2%20%3D%20%5Cdfrac%7BM%20%5Ccdot%20g%20-%20%5Cdfrac%7BM%20%5Ccdot%20g%7D%7B2%7D%7D%7Bcos%2837%20%5E%7B%5Ccirc%7D%29%7D%20%20%3D%20%5Cmathbf%7B%5Cdfrac%7BM%20%5Ccdot%20g%7D%7B2%20%5Ccdot%20cos%2837%20%5E%7B%5Ccirc%7D%29%7D%7D%7D)
F₀ = T₂·sin(37°)
Which gives;
![F_0 = \dfrac{M \cdot g \cdot sin(37 ^{\circ})}{2 \cdot cos(37 ^{\circ})}} = \dfrac{M \cdot g \cdot tan(37 ^{\circ})}{2} \approx \mathbf{0.377 \cdot M \cdot g}](https://tex.z-dn.net/?f=F_0%20%3D%20%5Cdfrac%7BM%20%5Ccdot%20g%20%5Ccdot%20sin%2837%20%5E%7B%5Ccirc%7D%29%7D%7B2%20%5Ccdot%20cos%2837%20%5E%7B%5Ccirc%7D%29%7D%7D%20%3D%20%5Cdfrac%7BM%20%5Ccdot%20g%20%5Ccdot%20tan%2837%20%5E%7B%5Ccirc%7D%29%7D%7B2%7D%20%20%5Capprox%20%20%5Cmathbf%7B0.377%20%20%5Ccdot%20M%20%5Ccdot%20g%7D)
<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
I'm assuming we're applying the standard Integral form of the calculation of work. The solution is provided in the image.
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2
Use a=(dv/dt) (change in velocity/ change in time)=acceleration
(1.2/5)=acceleration
F=ma (Newton's second law, Force= Mass x Acceleration
=960 x 0.24 F=230.4N If T<230.4N then the tow rope will hold
Answer:84.672 joules.
Explanation:
1) Data:
m = 7.2 kg
h = 1.2 m
g = 9.8 m / s²
2) Physical principle
Using the law of mechanical energy conservation principle, you have that the kinetic energy of the dog, when it jumps, must be equal to the final gravitational potential energy.
3) Calculations:
The gravitational potential energy, PE, is equal to m × g × h
So, PE = m × g × h = 7.2 kg × 9.8 m/s² × 1.2 m = 84.672 joules.
And that is the kinetic energy that the dog needs.