Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
Answer:
Buffers are solutions that resist changes in pH, upon addition of small amounts of acid or base. The can do this because they contain an acidic component, HA, to neutralize OH- ions, and a basic component, A-, to neutralize H+ ions. Since Ka is a constant, the [H+] will depend directly on the ratio of [HA]/[A-].
hope it's help
<h3>#carryONlearning </h3>
He did experiments with combustion and gas's
Answer:
A horrible, nasty smell.
Explanation:
A choking smell is a nasty, horrible smell. Hope this helps!
The branch of chemistry that the chemist might use will be the branch of <em>organic chemistry</em>. This is because gasoline is an organic compound. We can say that a compound is organic if it contains a carbon atom. Gasoline is composed of long chains of alkanes (hydrocarbons with single bonds) ranging from 4 carbon atoms to 12 carbon atoms.