<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 
Answer:
98.8
Explanation:
CsF + XeF6 --> CsXeF7
37.8g ................. ?g
37.8g CsF x (1 mol CsF / 151.9g CsF) x (1 mol CsXeF7 / 1 mol CsF) x (397.2g CsXeF7 / 1 mol CsXeF7) = 98.8g CsXeF7 .......... to three significant digits
Answer:
The Sun will appear to rise and set more slowly.
Larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
<h2>Cause of stronger dispersion force</h2>
Larger and heavier atoms and molecules have stronger dispersion forces than smaller and lighter ones because in a larger atom or molecule, the valence electrons are farther from the nuclei than in a smaller atom or molecule.
They are less tightly held to the nuclear charge present in the nucleus and can easily form temporary dipoles so we can conclude that larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
Learn more about London dispersion force here: brainly.com/question/1454795
Learn more: brainly.com/question/26139894
If iron atom looses 3 electrons, it forms Fe+3 (ferric) and if iron looses 2 electrons, it forms Fe+2(ferrous). Hope this helps!