Answer:
(a) 0.12924
(b) Taking into consideration significance level of 0.05 yet the value of p is greater than 0.05, it suggests that the coin is fair hence the coin can be used at the beginning of any sport event.
Explanation:
(a)
n=200 for fair coin getting head, p= 0.5
Expectation = np =200*0.5=100
Variance = np(1 - p) = 100(1-0.5)=100*0.5=50
Standard deviation,
Z value for 108,
P( x ≥108) = P( z >1.13)= 0.12924
(b)
Taking into consideration significance level of 0.05 yet the value of p is greater than 0.05, it suggests that the coin is fair hence the coin can be used at the beginning of any sport event.
Answer:
7.15
Explanation:
Firstly, the COP of such heat pump must be measured that is,

Therefore, the temperature relationship, 
Then, we should apply the values in the COP.


The number of heat rejected by the heat pump must then be calculated.


We must then calculate the refrigerant mass flow rate.



The
value is 145.27 and therefore the hot reservoir temperature is 64° C.
The pressure at 64 ° C is thus 1849.36 kPa by interpolation.
And, the lowest reservoir temperature must be calculated.



the lowest reservoir temperature = 258.703 kpa
So, the pressure ratio should be = 7.15
D D D D D D D D D D D D D D D DdDdddddf
Answer:
a) 2,945 mC
b) P(t) = -720*e^(-4t) uW
c) -180 uJ
Explanation:
Given:
i (t) = 6*e^(-2*t)
v (t) = 10*di / dt
Find:
( a) Find the charge delivered to the device between t=0 and t=2 s.
( b) Calculate the power absorbed.
( c) Determine the energy absorbed in 3 s.
Solution:
- The amount of charge Q delivered can be determined by:
dQ = i(t) . dt

- Integrate and evaluate the on the interval:

- The power can be calculated by using v(t) and i(t) as follows:
v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt
v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV
P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)
P(t) = -720*e^(-4t) uW
- The amount of energy W absorbed can be evaluated using P(t) as follows:

- Integrate and evaluate the on the interval:

The answer is D I’m 90% sure