A. M x L = moles.
<span>b. CH3COOH + NaOH ==> CH3COONa + H2O </span>
<span>I...6 mmols....0.......7.5 mmoles </span>
<span>C... 0........0.51 mmols..0 </span>
<span>E...6-0.511 ....0.......7.5+0.511 </span>
<span>I stands for initial </span>
<span>C stands for change. </span>
<span>E stands for equilibrium. </span>
<span>Just divide mmoles by 1000 to convert to moles. I work in mmoles because I get tired of writing those zeros. </span>
<span>c. done as in b.</span>
Unlike nuclear reactions, nuclear reactions are not affected by changes in temperature,
pressure, of the presence of catalysts. Also nuclear reactions of given radioisotope cannot be slowed down, speeded up, or stopped.
The correct answer is A) the number of electrons that fill the outer shell.
Brady
Answer:
1.98x10⁻¹² kg
Explanation:
The <em>energy of a photon</em> is given by:
h is Planck's constant, 6.626x10⁻³⁴ J·s
c is the speed of light, 3x10⁸ m/s
and λ is the wavelenght, 671 nm (or 6.71x10⁻⁷m)
- E = 6.626x10⁻³⁴ J·s * 3x10⁸ m/s ÷ 6.71x10⁻⁷m = 2.96x10⁻¹⁹ J
Now we multiply that value by <em>Avogadro's number</em>, to <u>calculate the energy of 1 mol of such protons</u>:
- 1 mol = 6.023x10²³ photons
- 2.96x10⁻¹⁹ J * 6.023x10²³ = 1.78x10⁵ J
Finally we <u>calculate the mass equivalence</u> using the equation:
- m = 1.78x10⁵ J / (3x10⁸ m/s)² = 1.98x10⁻¹² kg