Colligative properties are those substances that depend
on the number of substances in the solution, not in the identity of that
substance. The property changes the way that it does when the amount of solute
is increased because it enables the solute to be scattered more. For example,
the freezing point of salt water is lower than that of the pure water due to
the salt ions present in water.
First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ
For the equation to be balanced, the Atom's coefficient on the left side and the right side of the equation has to be equal
so, the answer would be :
Br2 + S2032- + 5H20 -- > BR2- + 2S02- + H+
Hope this helps
Carbon is the element at the heart of all organic compounds, and it is such a versatile element because of its ability to form straight chains, branched chains, and rings. Because these chains and rings can have all sorts of different functional groups in all sorts of different ways (giving the compond all sorts of different physical and chemical properties), carbon's ability to form the backbone of these large structures is critial to the existence of most chemical compounds known to man. Above all, the organic molecules crucial to the biochemical systems that govern living organisms depend on carbon compounds.