Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V

the network voltage phase is

the power transmitted is equal to:

the line induced voltage is

Answer:
There are 6 types of pressure control valves and their function is to regulate the pressure below a threshold level within safe limits and to maintain and control pressure of a particular circuit.
Explanation:
The six type of Pressure valve with their functions are given below:
a. Unloading Valve:
These type of pressure valve are used to pour fluid into the container at very low or no pressure.
b. Safety valve:
These are used when the pressure within the vessel is in excess as inside temperature is near about preset [point point then these valves are open to release the extra pressure and are closed once normal conditions are regained.
c. Pressure Reducing Valve:
These are basically used for the control of the pressure in downstream not exceeding the design limits.
d. Pressure Relief Valves:
These are basically used to limit and regulate the pressure of any system.
e. Counter Balance Valve:
These are used to develop pressure in the reverse direction at the actuator's return line in order to keep the load under control.
f. Sequence Valve:
These are used to maintain sequence or order in the operations of two parts or branches.
Answer:
401.3 kg/s
Explanation:
The power plant has an efficiency of 36%. This means 64% of the heat form the source (q1) will become waste heat. Of the waste heat, 85% will be taken away by water (qw).
qw = 0.85 * q2
q2 = 0.64 * q1
p = 0.36 * q1
q1 = p /0.36
q2 = 0.64/0.36 * p
qw = 0.85 *0.64/0.36 * p
qw = 0.85 *0.64/0.36 * 600 = 907 MW
In evaporation water becomes vapor absorbing heat without going to the boiling point (similar to how sweating takes heat from the human body)
The latent heat for the vaporization of water is:
SLH = 2.26 MJ/kg
So, to dissipate 907 MW
G = qw * SLH = 907 / 2.26 = 401.3 kg/s
Answer:
Explanation:
Using the kinematics equation
to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:

Then:

The distance traveled by car B in the given time (t) is expressed as:

For car A, the needed time (t) to come to rest is:

Also, the distance traveled by car A in the given time (t) is expressed as:

Relating both velocities:





t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.



d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft