1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
1 year ago
14

how is friction losses in pipes reduced? a. decrease the pipe diameter b. increase the length of the pipes. c. decrease the leng

th of the pipes d. increase the number of valves and pipe fittings e. reduce the surface roughness of the pipes f. increase the pipe diameter
Engineering
1 answer:
Citrus2011 [14]1 year ago
3 0

Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.

Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.

Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:

  • <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
  • <u><em>Reduce the surface roughness of the pipes</em></u>:  By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
  • <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.

You can learn more about friction losses at

brainly.com/question/13348561

#SPJ4

You might be interested in
Can i use two shunts and one meter
Lyrx [107]

Answer:

no

Explanation:

6 0
3 years ago
Read 2 more answers
Sarah is developing a Risk Assessment for her organization. She is asking each department head how long can they be without thei
Natali [406]

Answer:

Sarah is asking each department head how long they can be without their primary system. Sarah is trying to determine the Recovery Time Objective (RTO) as this is the duration of time within which the primary system must be restored after the disruption.

Recovery Point Objective is basically to determine the age of restoration or recovery point.

Business recovery and technical recovery requirements are to assess the requirements to recover by Business or technically.

Hence, Recovery Time Objective (RTO) is the correct answer.

8 0
3 years ago
A vertical cylinder (Fig. P3.227) has a 61.18-kg piston locked with a pin, trapping 10 L of R-410a at 10◦C with 90% quality insi
Whitepunk [10]

Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.

Write me here and I will give you my phone number - *pofsex.com*

My nickname - Lovely

4 0
2 years ago
A direct contact heat exchanger (where the fluid mixes completely) has three inlets and one outlet. The mass flow rates of the i
lara31 [8.8K]

Answer:

Enthalpy at outlet=284.44 KJ

Explanation:

m_1=1 Kg/s,m_2=1.5 Kg/s,m_3=22 Kg/s

h_1=100 KJ/Kg,h_2=120 KJ/Kg,h_3=500 KJ/Kg

We need to Find enthalpy of outlet.

Lets take the outlet mass m and outlet enthalpy h.

So from mass conservation

m_1+m_2+m_3=m

   m=1+1.5+2 Kg/s

  m=4.5 Kg/s

Now from energy conservation

m_1h_1+m_2h_2+m_3h_3=mh

By putting the values

1\times 100+1.5\times 120+2\times 500=4.5\times h

So h=284.44 KJ

4 0
3 years ago
Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radii of the pipe are r1 = 6 cm
Paul [167]

Answer:

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

Explanation:

We are given;

T∞ = 70°C.

Inner radii pipe; r1 = 6cm = 0.06 m

Outer radii of pipe;r2 = 6.5cm=0.065 m

Electrical heat power; Q'_s = 300 W

Since power is 300 W per metre length, then; L = 1 m

Now, to the heat flux at the surface of the wire is given by the formula;

q'_s = Q'_s/A

Where A is area = 2πrL

We'll use r2 = 0.065 m

A = 2π(0.065) × 1 = 0.13π

Thus;

q'_s = 300/0.13π

q'_s = 734.56 W/m²

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

6 0
3 years ago
Other questions:
  • A hanging wire made of an alloy of nickel with diameter 0.19 cm is initially 2.8 m long. When a 59 kg mass is hung from it, the
    15·1 answer
  • What is pixel's intensity ?​
    8·1 answer
  • OSHA does not approve individual states to have their own safety and health program.
    15·2 answers
  • If 20 kg of iron, initially at 12 °C, is added to 30 kg of water, initially at 90 °C, what would be the final temperature of the
    6·1 answer
  • A certain process requires 3.0 cfs of water to be delivered at a pressure of 30 psi. This water comes from a large-diameter supp
    9·1 answer
  • The outer surface of a spacecraft in space has an emissivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar rad
    12·1 answer
  • I'm really bad at measurements so I don't understand this.
    12·1 answer
  • Why might a hospital patient prefer to interact with a person instead of robot?
    13·1 answer
  • The thermal energy is carried by electromagnetic waves
    12·1 answer
  • Porque el invento de la bombilla es importante?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!