We can use 3rd equation of motion to find the velocity of the stone just before it strikes the ground.
Height = S = 318 meters
Acceleration = a= 9.8 m/s²
Initial velocity = u = 0
Final velocity = v = ?
According to the 3rd equation of motion:
2aS = v² - u²
2(9.8)(318)=v²
v²=6232.8
⇒
v = 78.95 m/s
So, the velocity rounded of to nearest integer will be 79 meters per second.
Thus, C option is the correct answer
Answer:
1 kg⋅m⋅s−2
Explanation:
I cant really explain it, but thata the answer
Answer:
C because it make sens
C the light wave traveled through ice and then through a Dimond.
Answer:
They host three or more distinct ecosystems at different elevations.
Explanation:
I checked it, and its right.
Great experiment ! Everybody should try it if they can get the equipment.
It demonstrates a lot of things that are very hard to explain in words.
I hope the students remembered to tilt the axis of the globe. If they didn't,
and instead kept it straight up and down, then each city had pretty much
the same amount of bulb-light all the way around, and there were no seasons.
If the axis of the globe was tilted, then City-D had the least variation in
seasons. City-D is only 2° from the equator, so the sun is more direct
there all year around than it is at any of the others.