2 C2H2 + 5 O2 --> 4 CO2 + 2 H2O
2.35 mol C2H2 - x mol O2
2 mol C2H2 - 5 mol O2

answer: 5.875 mol
The answer for the following problem is described below.
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Explanation:
Given:
enthalpy of combustion of glucose(Δ
of
) =-1275.0
enthalpy of combustion of oxygen(Δ
of
) = zero
enthalpy of combustion of carbon dioxide(Δ
of
) = -393.5
enthalpy of combustion of water(Δ
of
) = -285.8
To solve :
standard enthalpy of combustion
We know;
Δ
= ∈Δ
(products) - ∈Δ
(reactants)
(s) +6
(g) → 6
(g)+ 6
(l)
Δ
= [6 (-393.5) + 6(-285.8)] - [6 (0) + (-1275)]
Δ
= [6 (-393.5) + 6(-285.8)] - [0 - 1275]
Δ
= 6 (-393.5) + 6(-285.8) - 0 + 1275
Δ
= -2361 - 1714 - 0 + 1275
Δ
=-2800 kJ
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Answer:
Explanation:
Efficiency of the electric power plant is 
Here Temperature of hot source 
and Temperature of sink 
Hence the efficiency is
Now another formula for thermal efficiency Is

Here QI is the of heat taken from source 100 MJ ; Q2 of heat transferred to the sink (river) to be found
W is the of work done and W = QI -Q2
Hence From

Hence the of heat transferred to the river Is 
You start by using proportions to find the number of liters of solution:
180 g of glucose / 1 liter of solution = 18 g of glucose / x liter of solution
=> x = 18 g of glucose * 1 liter of solution / 180 g of glucose = 0.1 liter of solution.
If you assume that the 18 grams of glucose does not apport volume to the solution but that the volume of the solution is the same volumen of water added (which is the best assumption you can do given that you do not know the how much the 18 g of glucose affect the volume of the solution) then you should add 0.1 liter of water.
Answer: 0.1 liter of water.
Answer:
1231
Explanation:
nnfjjkdnsggjnSVDDK and that how u get the answer i a grammer