Sodium is a metal and bromine is a nonmetal so they form an ionic compound
nonmetals and nonmetals form covalent compounds
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
B. 35.45 ! Hope this helps
Answer:
true because the bonds cannot be broken down
In this kind of exercises, you should use the "ideal gas" rules: PV = nRT
P should be in Pascal:
445mmHg = 59328Pa
1225mmHg = 163319Pa
V should be in cubic meter:
16L = 0.016 m3
R =

= constant

=

==> P1 * V1 = P2 * V2
V2 =

=
V2 = 0.00581 m3 = 5.81 L