Answer:
μ = 0.136
Explanation:
given,
velocity of the car = 20 m/s
radius of the track = 300 m
mass of the car = 2000 kg
centrifugal force


F c = 2666. 67 N
F f= μ N
F f = μ m g
2666.67 = μ × 2000 × 9.8
μ = 0.136
so, the minimum coefficient of friction between road surface and car tyre is equal to μ = 0.136
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)
Answer:

Explanation:
<u>Projectile Motion</u>
In projectile motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration (assuming no friction), and the acceleration in the vertical direction is always the acceleration of gravity. The basic formulas are shown below:

Where
is the angle of launch respect to the positive horizontal direction and Vo is the initial speed.

The horizontal and vertical distances are, respectively:


The total flight time can be found as that when y = 0, i.e. when the object comes back to ground (or launch) level. From the above equation we find

Using this time in the horizontal distance, we find the Range or maximum horizontal distance:

Let's solve for 

This is the general expression to determine the angles at which the projectile can be launched to hit the target. Recall the angle can have to values for fixed positive values of its sine:


Or equivalently:

Given Vo=37 m/s and R=70 m


And

Answer:
b
Explanation:
the NEC has expanded the requirements for ground-fault circuit interrupters (GFCI) to protect anyone who plugs into an electrical system. Initially, it was only required for temporary wiring at construction sites and in dwelling unit bathrooms, but in recent years the Code requirements for GFCI protection have expanded to include many other areas, including commercial occupancies, fountains and swimming pools, and temporary installations, to name a few. (For a complete list of 2002 NEC references, see the sidebar below)
Answer:
my opinion would be electric
Explanation:
because when it comes down to the bare minimum the best choice for the world in the long run would be electric because it puts a big dent back for global warming and the burning of gasses so the more people who drive electric cars are the people who are trying to save the world a little at a time by preventing the burning of gasses. hope this helps :)