Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
The correct answer is particle pollution.
"The solubility of gases decreases as temperature rises" statements about trends in solubility is accurate.
<u>Option: D</u>
<u>Explanation:</u>
A substance's solubility is the quantity of that component that is needed at a defined degree of temperature to produce a saturated solution in any set quantity of solvent. Some compounds like hydrochloric acid, ammonia, etc have solubility that reduces with rising temperature. They are both standard-pressure gases.
When heating a solvent with a gas absorbed in it, both the solvent and the solute spike in the kinetic energy.When the gaseous solute's kinetic energy rises, the molecules have a higher propensity to overcome the solvent molecules' connection and migrate to the gas phase. Thus, a gas's solubility reduces with rising temperature.
Answer:
Extractive metallurgy
Explanation:
Extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form.