1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
7

A 3-in-thick slab is 10 in wide and 15 ft long. The thickness of the slab is reduced by 20% and width increases by 3% in a hot-r

olling operation. If the entry speed of the slab is 40 ft/min. Determine:
a. length
b. exit velocity of the slab
Engineering
1 answer:
xxMikexx [17]3 years ago
4 0

Answer: l = 2142.8575 ft

v = 193.99 ft/min.

Explanation:

Given data:

Thickness of the slab = 3in

Length of the slab = 15ft

Width of the slab = 10in

Speed of the slab = 40ft/min

Solution:

a. After three phase

three phase = (0.2)(0.2)(0.2)(3.0)

= 0.024in.

wf = (1.03)(1.03)(1.03)(10.0)

= 10.927 in.

Using constant volume formula

= (3.0)(10.0)(15 x 15) = (0.024)(10.927)Lf

Lf = (3.0)(10.0)(15 x 15)/(0.024)(10.927)

= 6750 /0.2625

= 25714.28in = 2142.8575 ft

b.

vf = (0.2 x 0.2 x 3.0)(1.03 x 1.03 x 10.0)(40)/(0.024)(10.927)

= (0.12)(424.36)/0.2625

= 50.9232/0.2625

= 193.99 ft/min.

You might be interested in
To provide some perspective on the dimensions of atomic defects, consider a metal specimen that has a dislocation density of 105
GenaCL600 [577]

Answer:

62.14\ \text{miles}

6213727.37\ \text{miles}

Explanation:

The distance of the chain would be the product of the dislocation density and the volume of the metal.

Dislocation density = 10^5\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^5\times 1000=10^8\ \text{mm}\\ =10^5\ \text{m}

1\ \text{mile}=1609.34\ \text{m}

\dfrac{10^5}{1609.34}=62.14\ \text{miles}

The chain would extend 62.14\ \text{miles}

Dislocation density = 10^{10}\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^{10}\times 1000=10^{13}\ \text{mm}\\ =10^{10}\ \text{m}

\dfrac{10^{10}}{1609.34}=6213727.37\ \text{miles}

The chain would extend 6213727.37\ \text{miles}

3 0
3 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
What is the mass of a brass axle that has a volume of 0.318 cm? ​
NeX [460]

Answer:

2.7g

Explanation:

the mass of a brass axle that has a volume of 0.318 cm is 2.7g.

8 0
3 years ago
A ____ is marked by two sets of double yellow lines, with each set having a broken line on the inside, and a solid line on the o
Vitek1552 [10]

Answer:

  center left-turn lane

Explanation:

A <em>center left turn lane</em> will be marked as described. The arrows, if present, generally indicate that left turns are permitted from the lane with these markings.

__

If the double yellow lines are solid, they are considered to be a "barrier" and are not to be crossed.

7 0
3 years ago
Read 2 more answers
Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the average diameter of the droplets is 200 u
Licemer1 [7]

Answer:

the difference in pressure between the inside and outside of the droplets is 538 Pa

Explanation:

given data

temperature = 68 °F

average diameter = 200 µm

to find out

what is the difference in pressure between the inside and outside of the droplets

solution

we know here surface tension of carbon tetra chloride at 68 °F is get from table 1.6 physical properties of liquid that is

σ = 2.69 × 10^{-2} N/m

so average radius = \frac{diameter}{2} =  100 µm = 100 ×10^{-6} m

now here we know relation between pressure difference and surface tension

so we can derive difference pressure as

2π×σ×r = Δp×π×r²    .....................1

here r is radius and  Δp pressure difference and σ surface tension

Δp = \frac{2 \sigma }{r}    

put here value

Δp = \frac{2*2.69*10^{-2}}{100*10^{-6}}  

Δp = 538

so the difference in pressure between the inside and outside of the droplets is 538 Pa

7 0
4 years ago
Other questions:
  • In C++ the declaration of floating point variables starts with the type name float or double, followed by the name of the variab
    14·1 answer
  • One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu
    11·1 answer
  • U R A*S TRUE GOD/ESS IS U ANSWER this:
    15·1 answer
  • 1. A turbine in a steam power plant operates isentropically with an inlet pressure (P3) of 3.5 MPa and inlet temperature (T3) of
    9·1 answer
  • Lets try to get to 100 sub before charismas day <br> Jordan Gracia 32 sub and 5 videos
    13·2 answers
  • Three spheres are subjected to a hydraulic stress. The pressure on spheres 1 and 2 is the same, and they are made of the same ma
    8·1 answer
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • A torque T 5 3 kN ? m is applied to the solid bronze cylinder shown. Determine (a) the maximum shearing stress, (b) the shethe 1
    10·1 answer
  • There are two methods to create simple robots. First, you can construct them by purchasing various individual components and ass
    15·1 answer
  • 9. What power tool incorporates a set of dies and punches to cut new
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!