Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C
Answer:
nope its a myth don't worry :)
Answer: Option (a) is the correct answer.
Explanation:
A protein part of an enzyme is known as an apoenzyme. An apoenzyme combines with a cofactor, it is known as holoenzyme.
Without a cofactor an apoenzyme cannot function as cofactor helps in the formation of an active enzyme system and provides a specific site on enzyme for the substrate.
Whereas a non-protein chemical compound or metal ion that helps in the activity of enzyme as a catalyst is known as a cofactor. A metal ion cofactor can be bound directly to the enzyme or to a coenzyme.
The organic non-protein molecules which bind to the protein molecule to form an active enzyme is known as a coenzyme. Coenzymes are small size molecules which help the enzymes to act as a catalyst.
Therefore, we can conclude that the statement an apoenzyme can catalyze its reaction without its cofactor, is false.
Answer:An alcoholic drink is a drink that contains ethanol, a type of alcohol produced by fermentation of grains, fruits, or other sources of sugar. The consumption of alcohol plays an important social role in many cultures. Most countries have laws regulating the production, sale, and consumption of alcoholic beverages.
Explanation: vodka the preferred alcoholic beverage of choice among alcoholics? #3 Doesn't make you feel bloated or full like beer does. It goes down quickly and smooth. #4 Gets you drunk just as fast as any other hard liquor can, and obviously much faster than beer or wine.