1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
15

A car increases velocity from 30 m/s to 60 m/s in 4 seconds. Calculate the average acceleration of the car over this time.

Physics
1 answer:
Lilit [14]3 years ago
3 0

Answer:

B.7.5m/s2

Explanation:

average acceleration=change invelocity/time taken

a=(60-30)/4

=7.5m/s2

You might be interested in
A boy throws a ball and accidentally breaks a window. The momentum of the ball and all the pieces of glass taken together after
Aleks [24]
When a boy throws a ball and accidentally breaks a window, the momentum of the ball and all the pieces of glass taken together after the collision is THE SAME as the momentum of the ball before the collision

hope this helps
6 0
3 years ago
Read 2 more answers
A coal - fired power station produces 100MJ of electrical energy when it is supplied with 400MJ of energy from its fuel. The eff
Alexus [3.1K]

Answer:

100 divide by 400 times 100 percent

8 0
2 years ago
Sean climbs a tower that is 71.3 m high to make a jump with a parachute. The mass of Sean plus the parachute is 81.4 kg. If U =
myrzilka [38]

Answer:

U = 56877.4 J

Explanation:

The potential energy of a body is that which it possesses because it is located at a certain height above the surface of the earth and can be calculated using the following formula:

U = mgh Formula (1)

Where:

U is the potential energy in Joules (J)

m is the mass of the body in kilograms (kg)

g is the acceleration due to gravity (m/s²)

h is the height at which the body is found from the surface of the earth in meters (m)

Data

m= 81.4 kg

g= 9.8 m/s²

h = 71.3 m

Potential energy of Sean and the parachute at the top of the tower

We replace data in the formula (1)

U = m*g*h

U = (81.4 kg)*(9.8 m/s²)*(71.3 m)

U = 56877.4 N*m

U = 56877.4 J

3 0
3 years ago
A large airplane typically has three sets of wheels: one at the front and two farther back, one on each side under the wings. Co
Tems11 [23]

(a) The force the ground exerts on each set of rear wheels when the plane is at rest on the runway is 0.743 MN.

(b) The force the ground exerts on the front set of wheels is 0.239 MN.

<h3>Center mass of the airplane</h3>

The concept of center mass of an object can be used to dtermine the mass distribution of the airplane along the line through the center.

<h3>Some assumptions</h3>
  • The wheels under the wind do not pass through the center line.
  • The position of the front wheel is constant and it is zero mark (origin).
  • The rear wheels are at 21.7 m mark

Position of the center mass of the plane is calculated as follows;

Let the position of the center mass, Xcm = y

the center mass is 3 m in front of rear wheels, that is

21.7 - y = 3

y = 21.7 - 3

y = 18.7 m

Xcm = 18.7 m

<h3>Mass of the plane at the position of the rear wheels</h3>

Let the mass of the plane at front wheels = M1

Let the mass of the plane at rear wheels = M2

X_{cm} = \frac{M_1x_1 + M_2x_2}{M_1 + M_2}

18.7 = \frac{M_1(0) + M_2(21.7)}{177000} \\\\3,309,900 = 21.7M_2\\\\M_2 = \frac{3,309,900}{21.7} \\\\M_2 = 152,529.95 \ kg

<h3>Force exerted by the ground on each rear wheel</h3>

There are two rear wheels, and the force exerted on each wheel due to mass of the airplane at this position is calculated as follows;

W = mg\\\\W_1 = W_2 = \frac{1}{2} (mg) = \frac{1}{2} (152,529.95 \times 9.8) = 743,396.76 \ N= 0.743 \ MN

<h3>Mass of the plane at the position of the front wheel</h3>

M1 + M2 = 177,000

M1 = 177,000 - M2

M1 = 177,000 - 152,529.95

M1 = 24,470.05 kg

<h3>Force exerted by the ground on the front wheel</h3>

W = mg

W = 24,470.05 x 9.8

W = 239,806.5 N = 0.239 MN

Learn more about center mass here: brainly.com/question/13499822

7 0
2 years ago
There is much debate about whether or not global warming exists and whether people and their actions are to blame. High levels o
sergiy2304 [10]
<span>C) Humans and their activities do not affect the natural cycles of the Earth

you can think that </span>Humans and their activities do not affect the natural cycles of the Earth.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Anyone good with this type of vocabulary. I really need to get this done to study.
    9·1 answer
  • How far can you get away from your little sister with a squirt gun filled with paint if you can travel at 3 m/s and you have 15s
    5·1 answer
  • What did the diver most likely use as a reference point to describe the position of the squid?
    12·1 answer
  • Calculate the acceleration of the car for each set of conditions using the formula a = (v2 – v1) / (t2 – t1) where v2 and v1 are
    14·2 answers
  • Suppose we consider the system of the three capacitors as a single "equivalent" capacitor. Given the charges of the three indivi
    6·1 answer
  • А
    10·1 answer
  • A neighborhood transformer on the top of a utility pole transforms 19.0 kV 60.0 Hz alternating voltage down to 120.0 V to be use
    12·1 answer
  • A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 4kg. The carriage ha
    10·1 answer
  • A child pushes his younger brother with 54 newtons of force, causing him to accelerate at 3.8 m/s/s. Assuming no friction, what
    13·1 answer
  • A student uses a meter to measure 120 coulombs flowing through a circuit in 60 seconds. what is the current in this circuit?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!