The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
Fr^2 = 75.9N+105.8N=181.7
<u><em>Fr = </em></u><u><em>181.7N.</em></u>
Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s
<span>D. Convection occurs when heated particles of a material flow toward areas having less thermal energy. This movement of particles can only occur in gases and liquids, not solids.</span>
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.