The H+ concentration that would best describe a basic solution would be the one having values less than 10^-7. The pH of a solution is related to H+ concentration by pH = -log[H+]. Therefore, as the concentration of H+ decreases the alkalinity would rise.
<em>m Na₂CO₃: 23g×2 + 12g + 16g×3 = 106 g/mol</em>
------------------------------
1 mol ------- 106g
X ------------ 10,6g
X = 10,6/106
<u>X = 0,1 mol Na₂CO₃</u>
Answer:
oxidation state of sulphur=x
Explanation:
Na2S4O6=2[+1]+4x+6[-2]=0
+2+4x-12=0
4x-10=0
4x=10
x=10/4=2.5
+5
Explanation:
The given radical is PO₄³⁻
To solve this problem, we need to understand what oxidation number entails.
The extent of the oxidation of each atom is expressed by the oxidation number.
Here are some rules for assigning them:
- Elements in an uncombined state or elements that combines with one another, their oxidation number is zero.
- The charge on an ion is its oxidation number
- In an neutral compound, algebraic sum of all the oxidation numbers of all atoms is zero.
- In a radical, the algebraic sum of all the oxidation numbers of the ions is equal to the charge on them.
Oxygen is known to have an oxidation number of -2;
PO₄³⁻
P + 4(-2) = -3
P -8 = -3
P = -3 + 8 = +5
The charge on phosphorus is +5
learn more:
Oxidation number brainly.com/question/2086855
#learnwithbrainly