Answer:
1.62x10⁻³ moles of NaOH were dispensed
Explanation:
Molarity is an unit in chemistry defined as the ratio between moles of solute (In the problem, NaOH), per liter of solution.
The concentration of the solution is 0.125moles per liter. That means 1L of solution has 0.125 moles of NaOH.
The volume you dispensed in the buret was:
15.67mL - 2.73mL =
12.94mL of the 0.125M NaOH are:
12.94mL = 0.01294L * (0.125moles / L) =
<h3>1.62x10⁻³ moles of NaOH were dispensed</h3>
Answer:
104.352°C
Explanation:
Data Given:
Boiling point of water = 100.0°C
Kb (boiling point constant = 0.512°C/m
Concentration of the Mg₃(PO₄)₂ = 8.5 m
Solution:
Formula Used to find out boiling point
ΔTb = m.Kb . . . . . . (1)
where
ΔTb = boiling point of solution - boiling point of water
So,
we can write equation 1 as under
ΔTb = Tb (Solution) -Tb (water)
As we have to find out boiling point so rearrange the above equation
Tb (Solution) = m.Kb + Tb (water) . . . . . . . (2)
Put values in Equation 2
Tb (Solution) = (8.5 m x 0.512°C/m ) + 100.0°C
Tb (Solution) = 4.352 + 100.0°C
Tb (Solution) = 104.352°C
so the boiling point of Mg₃(PO₄)₂ 8.5 m solution = 104.352°C
Yes it could be calculated everything that has numbers like those you calculate them and see what u get
Answer:
Pb(NO3)2+ 2Kl →PbI2 + 2KNO3
Mg + 2HCl → MgCl2 + H2
4H2O → 4H^+ + 4OH^-
2Mg + O2 → 2MgO
Explanation:
This question has to do with the balancing of chemical reaction equations. The general rule for balancing chemical reaction equation is that the number of atoms of each element on the left hand side of the reaction equation must be equal to the number of atoms of the same element on the right hand side of the reaction equation.
This principle was followed in balancing each reaction equation above. For instance, in the burning of magnesium, there are two atoms of both magnesium and oxygen on either side of the reaction equation.