Answer:
Specific heat capacity formula
Explanation:
The heat capacity gives the exact heat energy at which a given mass of a substance is heated from one temperature to another.
This formula can help determine how much heat is gained or lost during the reaction and is given by:
Q = mcΔT
where:
Q = heat energy in Joules or Calories
m - mass of the substance (g)
c = Specific heat capacity (J/kg°C)
ΔT = change in temperature = (final temp - initial temp) (°C)
I hope this was helpful.
Potassium is placed where it is based on its properties and it's reactivity. It's also placed there based on it's atomic number.
Sodium metal and water form aqueous sodium hydroxide and hydrogen gas:
Na(s) + 2H2O(l) → (Na+)(aq) + 2(OH-)(aq) + H2(g)
Looks like your entries didn't translate well on screen, so find the solution with the coefficients and ions which match this one.
Answer:
Elements with low ionization energies.
Explanation:
The ionization energy of an atom reffers to the amount of energy that is required to remove an electron from the gaseous form of that atom or ion.
The greater the ionization energy, the more difficult it is to remove an electron. The ionization energybis one of the indicator that shows the reactivity of an element. Elements with a low ionization energy such as metals are usually reffered to as a reducing agents and form cations, this give metals the tendency to
give away their valence electrons when bonding, whereas non-metals tend to take electrons.
Metallic elements have different properties such as shiny, heat and electricity conductivity . They are malleable and ductile Some metals, such as sodium, are soft and can be cut with a knife. while some are very hard such as iron.