Answer:
The second classmate is right.
Explanation:
The height of first summit provides the potential energy it will use to climb the following ones.
Ep = m * g * h
Where
m: mass
g: acceleration of gravity
h: height
When the train goes downwards the potential energy is converted into kinetic energy (manifested as speed) and when it climbs it consumes its kinetical energy. As long as no summit is taller than the first the train should have enough energy to climb them.
Also it must be noted that friction also consumes energy, and if the track is too lomg all the energy might be consumed by it.
Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa
Explanation:
Given that;
patm = 79 kPa, h = 13 in of H₂O,
A sketch of the problem is uploaded along this answer.
Now
pA = patm + 13 in of H₂O ( h × density × g )
pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)
pA = 82.23596 kPa
the absolute static pressure in the gas cylinder is 82.23596 kPa
Answer:
Explanation:
i took the test and screenshot it
What the white racism cop did against George Floyd was absolutely disgusting. It’s so messed up knowing racism and police brutality against black people still exists in this world today. It’s time for all of us to unite and come together and fight for a change already.