The correct answer would be option 3. I order for a single displacement to occur there must be a single element and one compound. From then, the single element will then swap places with one of the elements in the compound (or in this case single circle and combined circles). Hope this helped!
The answer is Al.
If it is a main group element with 3 electrons in its Lewis dot structure, it must be in group 3A. If it is in the 3p orbital section, then it must be in period 3, since the p orbital is a valence orbital and the number that preceeds it is the principal quantum number. Therefore, your answer is the element in period 3 and group 3A, which is aluminum.
To determine the name of an anion, you take the name of its element and replace the end with "ide".
<h3>What is an anion?</h3>
An anion in chemistry is a negatively charged ion.
Anions are usually formed when a non-metallic atom gains electron(s).
An anion is usually named by taking the elemental name, removing the ending, and adding “ide.
Examples of anions are as follows:
- fluoride (F-)
- Chloride (Cl-)
- Iodide (I-)
Learn more about anions at: brainly.com/question/15578817
#SPJ1
Explanation:
Reaction equation is as follows.

Here, 1 mole of
produces 2 moles of cations.
![[Na^{+}] = 2[Na_{2}SO_{3}] = 2 \times 0.58](https://tex.z-dn.net/?f=%5BNa%5E%7B%2B%7D%5D%20%3D%202%5BNa_%7B2%7DSO_%7B3%7D%5D%20%3D%202%20%5Ctimes%200.58)
= 1.16 M
= 0.58 M
The sulphite anion will act as a base and react with
to form
and
.
As, 
= 
=
According to the ICE table for the given reaction,

Initial: 0.58 0 0
Change: -x +x +x
Equilibrium: 0.58 - x x x
So,
![K_{b} = \frac{[HSO^{-}_{3}][OH^{-}]}{[SO^{2-}_{3}]}](https://tex.z-dn.net/?f=K_%7Bb%7D%20%3D%20%5Cfrac%7B%5BHSO%5E%7B-%7D_%7B3%7D%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BSO%5E%7B2-%7D_%7B3%7D%5D%7D)


x = 0.0003 M
So, x =
= 0.0003 M
= 0.58 - 0.0003
= 0.579 M
Now, we will use
= 0.0003 M
The reaction will be as follows.

Initial: 0.0003
Equilibrium: 0.0003 - x x x


= 
= 
Therefore, 
As, x <<<< 0.0003. So, we can neglect x.
Therefore, 
= 
x = 
x =
= 
![[H^{+}] = \frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
= 
=
M
Thus, we can conclude that the concentration of spectator ion is
M.
Answer:
C) hydrogen bonding
Explanation:
All atoms and molecules have London Dispersion Forces between them, but they are usually overshadowed but the much stronger forces. In this scenario the major attractive force in HF molecules are hydrogen bonds. Hydrogen bonds are electrostatic forces of attraction found when Hydrogen is bonded to a more electronegative atom such as Oxygen, Chlorine and Fluorine.