Answer: Its A or D
wish i had an actual answer sorry..
Ba stays as Ba+2 and Cl stays as Cl-
Answer:
0.0084
Explanation:
The mole fraction of BaCl₂ (X) is calculated as follows:
X = moles BaCl₂/total moles of solution
Given:
moles of BaCl₂ = 0.400 moles
mass of water = 850.0 g
We have to convert the mass of water to moles, by using the molecular weight of water (Mw):
Mw of water (H₂O) = (2 x 1 g/mol)+ 16 g/mol = 18 g/mol
moles of water = mass of water/Mw of water = 850.0 g/(18 g/mol) = 47.2 mol
The total moles of the solution is given by the addition of the moles of solute (BaCl₂) and the moles of solvent (water):
total moles of solution = moles of BaCl₂ + moles of water = 0.400 + 47.2 mol = 47.6 mol
Finally, we calculate the mole fraction:
X = 0.400 mol/47.6 mol = 0.0084
Answer:The correct answer is option C.
Explanation;
Water has unique property that is, it expands on freezing.Which is the reason for less density of ice than water. The cracking of the bottle was due to the expansion of water (present inside the bottle) on freezing.
Generally, density is inversely proportional to the volume of the substance.


As we know ,that water expands on freezing which means that volume increases. And with increase in volume of density decreases.
Hence, the correct answer is option C.
8 moles of H 2O are produced.
First, we need to figure out the chemical equation for producing water with oxygen which is H 2 + O2 = H 2O. Then, we need to balance the equation, resulting in 2H 2 + O2 = 2H 2O.
<h3>How many moles of H2 are required to make one mole of NH3?</h3>
Calculate 0.88074 mol H2's mass. If N2 is too much, 1.776 g H2 is needed to create 10.00 g of NH3. To create 8.2 moles of ammonia, 2 moles of NH3 are created when 1 mole of N2 and 3 moles of H2 mix. 4.1 moles of N2 Fast are consequently needed to make 8.2 moles of NH3.
<h3>
How many moles of h2 are needed to produce a solution?</h3>
An O-H bond has a bond energy of 1 09 Kcal. 3.6. A 38.0mL 0.026M HCl solution and a 0.032M NaOH solution react. Thus, 10 moles of NH 3 are obtained by dividing 15 moles of H2 by the 1.5 moles of H2 required for the product. and 9.3 x 10-3 moles of bromobutane (1.27/137 =.00927moles).
Learn more about H2O:
brainly.com/question/2193704
#SPJ4