The phosphate molecule that is released it is coupled to a different ADP molecule to make new molecule of ATP.
Hydrolysis of high-energy compound (ATP) using water:
ATP + H₂O → ADP + Pi
ATP is short for adenosine triphosphate.
Hydrolysis is a reaction that breaks down the chemical bonds between molecules via the addition of a water molecule.
A condensation reaction is a reaction that joins two molecules in a chemical bond.
ATP is resynthesized in a condensation reaction that adds an inorganic phosphate group to ADP. The addition of a phosphate group is catalyzed by the enzyme ATP synthase.
More about potential energy: brainly.com/question/21175118
#SPJ4
thermal conduction and convection processes we explain the temperature profile: warmer at the bottom and colder at the top
Temperature is a measure of the internal energy of molecules.
When the pot is on the burner, the lower part of the pot acquires energy from the flame, this energy increases the temperature of the metal that is in contact with the liquid from the bottom, by a process of thermal conduction, while the liquid in the top is kept at the same temperature.
As time progresses, the hotter lower liquid, for which it has a lower with the metal bottom heats up by conduction. density, conscientiously rise and a transfer of heat is created by convection, which raises the temperature of the hot liquid and makes the liquid fall that is colder from the upper part than at the coming into contact
This cycle is repeated heating all the liquid. But the liquid with the liquid in the lower part always at a higher temperature than the liquid in the upper part, the process stops when the liquid in the lower part reaches the boiling point, than the passage from liquid to gas, during which the temperature remains constant.
With the thermal conduction and convection processes we explain the temperature profile: warmer at the bottom and colder at the top.
Learn more about temperature transfer here: brainly.com/question/24200572
Answer:
See explanation below
Explanation:
You are missing the structure, therefore, I will do an example with one that I found on another place to try to explain.
This acid mechanism always involves carbocations, and positive charges, never negative because we are in acidic mediums.
In the first step, the lone pairs of the oxigen from the epoxide, substract one hydrogen of the reactant.
Second step, the lone pairs of the oxygen from the reactant, do a nucleophylic attack to the carbon of the epoxide. In this case, it will do it to the most substitued carbon.
Then, in the third step by acid base equilibrium, the hydrogen from the reactant that attacked, is substracted from the molecule by a molecule of water (We are in acid medium, therefore, there is traces of water) and the final structure is formed.
Check picture for mechanism:
Answer:
- The limiting reactant is lead(II) nitrate.
- 7.20 g of precipitate are formed.
- 1.9 g of the excess reactant remain.
Explanation:
The reaction that takes place is:
- Pb(NO₃)₂(aq) + 2KCl(aq) → PbCl₂(s) + 2KNO₃(aq)
With a percent yield of 87.5%.
To determine the limiting reactant, first we <u>convert the masses of each reactant to moles</u>, using their molar mass:
- 9.82 g Pb(NO₃)₂ ÷ 331.2 g/mol = 0.0296 mol Pb(NO₃)₂
- 5.76 g KCl ÷ 74.55 g/mol = 0.0773 mol KCl
Looking at the stoichiometric coefficients, we see that 1 mol of Pb(NO₃)₂ would react completely with 2 moles of KCl. Following that logic, 0.0296 mol Pb(NO₃)₂ would react completely with (2x0.0296) 0.0592 mol of KCl. We have more than that amount of KCl, this means KCl is the reactant in excess and Pb(NO₃)₂ is the limiting reactant.
To calculate the mass of precipitate (PbCl₂) formed, we <u>use the moles of the limiting reactant</u>:
- 0.0296 mol Pb(NO₃)₂
*
* 87.5/100 = 7.20 g PbCl₂
- Keeping in mind the reaction yield, the moles of Pb(NO₃)₂ that would react are:
- 0.0296 mol Pb(NO₃)₂ * 87.5/100 = 0.0259 mol Pb(NO₃)₂
Now we <u>convert that amount to moles of KCl and finally into grams of KCl</u>:
- 0.0259 mol Pb(NO₃)₂
*
= 3.86 g KCl
3.86 g of KCl would react, so the amount remaining would be: