As Kinetic Energy=half of Mass into Velocity square so as velocity is doubled the K.E of the object is doubled..
Answer:
.15s
Explanation:
Follow the units here. If you divide 300.000m by 2000m/s then you'll end up with the meters reduced and just the seconds. So that's what you do to get the time:
(300.000m)/(2000m/s ) =
(300.000/2000)(m•s/m) =
0.15s
Answer:
The answer is C. Pollution
Answer:
Part a)

Part b)
Ball thrown downwards =
Ball thrown upwards =
Part c)

Explanation:
Part a)
Since both the balls are projected with same speed in opposite directions
So here the time difference is the time for which the ball projected upward will move up and come back at the same point of projection
Afterwards the motion will be same as the first ball which is projected downwards
so here the time difference is given as



Part b)
Since the displacement in y direction for two balls is same as well as the the initial speed is also same so final speed is also same for both the balls
so it is given as




Part c)
Relative speed of two balls is given as


now the distance between two balls in 0.8 s is given as



the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415