Answer:
The 3rd graph
Explanation:
A free body diagram is a diagram which shows all the forces acting on an object.
The problem asks us to find the free body diagram of block A, so we must find all the forces acting on block A.
We have 3 forces acting on block A in total:
- The force of gravity (its weight), which pushes the block downward (in the diagram, it is the force represented with 
- The tension in the rope 1, which pulls block A upwards: this force is represented with 
- The tension in the rope 2, due to the weight of block 2, which pulls block A downwards: this force is represented with 
Based on the direction of these 3 forces, the correct diagram is the 3rd one.
Answer:
Momentum = 1.534 kgm/s
Explanation:
Using the equations of motion, we can obtain the velocity of the ball as it hits the ground.
g = 9.8 m/s²
y = 12 m
u = initial velocity = 0 m/s, since the ball was released from rest
v = final velocity befor the ball hits the ground.
v² = u² + 2ay
v² = 0 + 2×9.8×12 = 235.2
v = 15.34 m/s
The momentum at any point is given as mass × velocity at that point
Mass = 100 g = 0.1 kg, velocity = 15.34 m/s
Momentum = 0.1 × 15.34 = 1.534 kgm/s
Answer:
t = 402 years
Explanation:
To find the number of year that electrons take in crossing the complete transmission line, you first calculate the drift speed of the electrons. Then, you use the following formula for the current in a wire:
(1)
n: number of mobile charge carrier per volume = 8.50*10^28 e/m^3
q: charge of the electron = 1.6*10^-19 C
vd: drift velocity of electron in the metal = ?
A: cross sectional area of the wire = π r^2 = π (0.02m/2)^2 = 3.1415*10^-4 m^2
I: current in the wire = 1110 A
You solve the equation (1) for vd:

Next, you calculate the time by using the information about the length of the line transmission:

hence, the electrons will take aproximately 402 years in crossing the line of transmission
I believe that if you shine a light in the front of a binocular, then the light would condense and be more pin-pointed while if you point it through the part where your eyes go the light would blow up. Either way, the light will be refracted once it travels through the lenses.
Answer:
Seismic activityis/are) one type of tectonic event captured in geologic maps.