Answer:
cis-1-tert-butyl-3-methylcyclohexane will have a higher percentage of the diequatorial-substituted conformer when compared with the diaxialsubstituted conformer.
Explanation:
The two compound contain or have high stability with the substituent group is at equatorial position but the tert-betyl group in cis-1-tert-butyl-3-methylcyclohexane is larger than the methyl group in trans-1,4-dimethylcyclohexane.
Thus, the equatorial position will be more favorable for the substituent group in the cis-1-tert-butyl-3-methylcyclohexane, therefore having higher percentage of the diequatorial substituted conformer compared with that of diaxial-substituted conformer.
Answer:
Explanation:
Hello,
The six-carbon benzene ring contains two types of bonds: C-C and C-H bonds, that are -hybridized σ bonds, and the six π bonds that form the aromatic ring. The σ bonds form from one orbital and two orbitals from each carbon, which then bond the carbon to the two carbons on either side and the carbon's single hydrogen. The remaining orbital from each carbon atom sticks out above and below the plane of the ring; these orbitals overlap sideways, rather than lengthwise, to form the aromatic π bond system.
Best regards.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
<h3>What is energy?</h3>
Energy is the ability to do work.
The primary source of energy on the earth is the sun.
The energy from the sun is used by producers to produce food on which other organisms depend on.
The energy from the sun gets to the humpback whale through producers such as plankton.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
Learn more about energy flow at: brainly.com/question/21786633
Hello there!
Electronegativity is what determine's an atoms ability to attract electrons shared in a chemical bond.Ionization, atomic radius, and also <span> ionic radius both would not determine this as they wouldn't have any similar bond that would attract.
</span><span>
Your correct answer would be (option c)
</span><span>A. ionization
B. atomic radius
C. electronegativity
D. ionic radius
I hope this helps you!</span>