Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
Answer:
I think the answer should be 147
Explanation:
Answer:
In aqueous solution the pH scale varies from 0 to 14, which indicates this concentration of hydrogen. Solutions with pH less than 7 are acidic (the value of the exponent of the concentration is higher, because there are more ions in the solution) and alkaline (basic) those with a pH higher than 7. If the solvent is pure water, the pH = 7 indicates neutrality of the solution
Explanation:
PH is a measure of how acidic or basic a liquid is. Specifically, from a dissolution. The acidity of a solution is essentially due to the concentration of hydrogen ions dissolved in it. In reality, the ions are not found alone, but are in the form of hydronium ions consisting of one oxygen molecule and three positively charged hydrogen. PH precisely measures this concentration. And to do it, we can use simple and very visual methods.
Answer:
Lattice energy is <em>the energy required to convert a mole of ionic solid into its constituent ions in the gas phase</em>
Explanation:
Lattice energy is usually calculated by the Born-Haber cycle, from the affinity energies and sublimation ethalphy values. It is used as an estimation of the ionic energy strength between the ions in an ionic compound.
It is defined as the energy needed to broke 1 mol of a given ionic compound into its ions in the gaseous state. For example, the lattice energy for sodium chloride (NaCl) is the energy required to separate 1 mol of solid ionic compound (NaCl(s)) and produce the sodium and chlorine ions in the gas phase: Na⁺(g) and Cl⁻(g).