Answer:
Supersaturated.
Explanation:
Hello there!
In this case, according to this solubility chart, we infer that for NH3, the solubility starts at 90 grams of NH3 that are soluble in 100 g of water at 0 °C and ends in about 8 g in 100 g of water at 100 °C for a saturated solution.
However, since we are asked for the solubility of NH3 at 20 °C, we can see that, according to the table and the curve for NH3, about 52 g of NH3 are soluble in 100 g of water; thus, for the given 60 g of NH3, we will say that 8 grams will remain undissolved, and therefore, this solution will be supersaturated.
Regards!
Answer:
Current, I = 8 A
Explanation:
We have,
Voltage, V = 160 V
Resistance, R = 20 ohms
It is required to find the current. The relation between current, voltage and resistance is called Ohm's law. It is given as :

I = current

So, the value of current is 8 A.
Answer:
i think its true but I’m not sure
Explanation:
I know that they can. Be mixed
There are:
3.41 moles of C
4.54 moles of H
3.40 moles of O.
Why?
To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.
We have that:

To know the percent of each element, we need to to the following:

So, we know that for the 100 grams of the compound, there are:
40.92 grams of C
4.58 grams of H
54.49 grams of O
We know the molecular masses of each element:

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.
Have a nice day!
The subatomic particles that identifies an element and also represents its atomic number would be A. The number of protons.