Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!
Answer:
2Mg + O₂ ⟶ 2MgO
Explanation:
Step 1. Start with the most complicated-looking formula (O₂?).
Put a 1 in front of it.
Mg + 1O₂ ⟶ MgO
Step 2. Balance O.
We have fixed 2 O on the left. We need 2O on the right. Put a 2 in front of MgO.
Mg + 1O₂ ⟶ 2MgO
Step 3. Balance Mg.
We have fixed 2 Mg on the right-hand side. We need 2 Mg atoms on the left. Put a 2 in front of Mg.
2Mg + 1O₂ ⟶ 2MgO
Every formula now has a coefficient. The equation should be balanced. Let’s check.
<u>Atom</u> <u>On the left</u> <u>On the righ</u>t
Mg 2 2
O 2 2
All atoms are balanced.
The balanced equation is
2Mg + O₂ ⟶ 2MgO
Answer:
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
Explanation:
given that enthalpy of gaseous reactants decreases by 162KJ and workdone is -194KJ
then,
change in enthalpy (ΔH) = -162( released energy)
work(w) = -194KJ
change in enthalpy is said to be negative if the heat is evolved during the reaction while heat change(ΔH) is said to be positive if the heat required for the reaction occurs.
At constant pressure the change in enthalpy is given as
ΔH = ΔU + PΔV
ΔU = change in energy
ΔV = change in volume
P = pressure
w = -pΔV
therefore,
ΔH = ΔU -W
to evaluate energy change we have,
ΔU =ΔH + W
ΔU = -162+ (-194KJ)
= -356KJ
<em>therefore, the reaction where heat is released is exothermic reaction since theΔH is negative</em>
I believe the correct term that would fit the statement would be greater than. In a spontaneous fusion reaction, the total mass of the products is greater than the mass of the original elements. This nuclear reaction involves at least two nuclei that fuses to form one nuclei having larger mass than that of the reactant.
Answer:
an isotope has the same number of protons but a different number of neutrons than the other atoms of the same element.