<span>The sum of the protons and neutrons in an atom equals the mass number. </span>
The answer to your question is,
4 kilometers north
-Mabel <3
Answer:
The one with highest velocity
Explanation:
The momentum of an object is given by

where
m is the mass of the car
v is the velocity of the car
In this problem, we have two identical cars: identical means they have same mass, so

The momentum of car 1 is

while the momentum of car 2 is

By comparing the two expressions, we see that the car with greatest momentum is the one with highest velocity, since the mass is the same.
Answer:
1.4 m/s
Explanation:
The minimum speed will be when the diver's initial velocity is horizontal.
First, find the time it takes for the diver to fall 10 meters.
Given:
Δy = 10 m
v₀ᵧ = 0 m/s
aᵧ = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
10 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.43 s
Now find the initial horizontal velocity.
v = (2 m) / (1.43 s)
v = 1.4 m/s
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2