Answer:
its B
Explanation:
It's B & A at the same time because A. a roller coaster uses brakes to slow down and stop. B is the most reasonable answer. Because all roller coasters go up and over a second time over the hill, but they also slow down. But go with B.
TELL ME IF I´M RITE
Answer:
Explanation:
separation between two gaps, d = 5 cm
angle between central and second order maxima, θ = 0.52°
use
d Sinθ = n λ
n = 2
0.05 x Sin 0.52° = 2 x λ
λ = 2.27 x 10^-4 m
λ = 226.9 micro metre
Answer:
7.2 cm
Explanation:
magnetic field, B = 0.301 T
speed, v = 7.92 x 10^5 m/s
mass, m = 4.39 x 10^-27 kg
q = 1.6 x 10^-19 C
The radius of singly changed ion is given by

where, m is the mass of ion, v be the speed of ion, B is the magnetic field and q be the charge

r = 0.072 m
r = 7.2 cm
Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!