Answer:
a) W = 6.75 J and b) v = 3.87 m / s
Explanation:
a) In the problem the force is nonlinear and they ask us for work, so we must use it's definition
W = ∫ F. dx
Bold indicates vectors. In a spring the force is applied in the direction of movement, whereby the scalar product is reduced to the ordinary product
W = ∫ F dx
We replace and integrate
W = ∫ (-60 x - 18 x²) dx
W = -60 x²/2 -18 x³/3
Let's evaluate between the integration limits, lower W = 0 for x = -0.50 m, to the upper limit W = W for x = 0 m
W = -30 [0- (-0.50) 2] -6 [0 - (- 0.50) 3]
W = 7.5 - 0.75
W = 6.75 J
b) Work is equal to the variation of kinetic energy
W = ΔK
W = ΔK = ½ m v² -0
v =√ 2W/m
v = √(2 6.75/ 0.90)
v = 3.87 m / s
Answer:
put these numbers in the boxes from up to down. hope this helps! :)
Explanation:
7
6
3
1
8
4
2
5
348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:

For 40 hours, she gets paid $340
Therefore, for 1 hour, she gets paid 340/40=$8.50
Her hourly wage is $8.50