F = (mass)(acceleration) = ma
m = 0.25 kg
Vi = 16 m/s
t = 2 s
Vf = 0 m/s (since it was put to stop)
a=(Vf-Vi)/t
a=(0-16)/2
a = 8 m/s^2 (decelerating)
F = ma = (0.25 kg)(8 m/s^2)
F = 2 N
<span>Hope
this answer will be a good h<span>elp for you.</span></span>
Answer:
Explanation:
When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.
Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.
While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.
On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.
The answer is C. that liquids and gases both take the shape of their container.
Think of it this way, if you take an ice cube and put it in your glass, it will stay in its shape and stay that way until it melts. But if you put liquid or a gas into a glass, it will take the shape of the glass that it is put into.
Explanation:
The U.S. launched its first man into space in May 1961.
It makes the data thet they collect more reliable so if they need the data again, they have already tested it a few times so therefor they know that it is right.