Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
Answer:
In this chemical reaction, which is considered irreversible, that is why the reaction arrow is ONE and unidirectional and not two in opposite directions, which means reversibility of the reaction.
In summary, if we look closely at the reaction, we observe that the stoichiometric values are balanced in the reaction, therefore there is THE SAME AMOUNT OF REAGENTS AS PRODUCTS.
This phenomenon has to be met in ALL CHEMICAL REACTIONS, the stoichiometric balance is essential for this reaction to be well expressed.
Why is stoichiometric balance so important? Why we indicate that we have the same amount of reagents as products, means that NOTHING IS LOST, EVERYTHING IS TRANSFORMED in the matter of the organic compounds that reacted.
Explanation:
Although if we observe the stoichiometric values well they are not correct with respect to oxygen, therefore it would be necessary to correct that in the chemical reaction, but above we briefly explain why the balancing of the reactions and the relationship they have with the conservation of the mass.
The law of conservation of mass indicates that mass is never lost, but is transformed, like energy, considering that it happens in terrestrial life.
<span>B) a cube with a ball stuck on each of its eight corners and one suspended at its center </span>