Answer:
After the solution is heated, but before additional solute is added
Explanation:
An unsaturated solution is a solution that contains less solute than it can normally hold at a given temperature. Hence an unsaturated solution can still dissolve more solute.
When the solution is heated, the saturated cold solution becomes an unsaturated hot solution which is capable of dissolving more solute at this point.
Once more solute is dissolved, the solution becomes saturated again just before it begins to cool since no more solute dissolves in the solution at some point before cooling and addition of seed crystals.
There is no specific name for a glacier that break off as an iceberg. However, the part of the glacier in which this happens is called the "zone of wastage". Chunks break off in a process called "calving".
Answer:
Check the explanation
Explanation:
Answer – Given,
acid and there are three Ka values

The transformation of
is the second dissociation, so we need to use the Ka2 = 6.2x10-8 in the Henderson-Hasselbalch equation.
Mass of KH2PO4 = 22.0 g , mass of Na2HPO4 = 32.0 g , volume = 1.00 L
First we need to calculate moles of each
Moles of KH2PO4 = 22.0 g / 136.08 g.mol-1
= 0.162 moles
Moles of Na2HPO4 = 32.0 g /141.96 g.mol-1
= 0.225 moles
[H2PO4-] = 0.162 moles / 1.00 L = 0.162 M
[HPO42-] = 0.225 moles / 1.00 L = 0.225 M
Now we need to calculate the pKa2
pKa2 = -log Ka
= -log 6.2x10-8
= 7.21
We know Henderson-Hasselbalch equation
pH = pKa + log [conjugate base] / [acid]
pH = 7.21 + log 0.225 / 0.162
= 7.35
The pH of a buffer solution obtained by dissolving 22.0 g of KH2PO4 and 32.0 g of Na2HPO4 in water and then diluting to 1.00 L is 7.35
Answer:
a) T
b) T
c) F
d) F
e) T
f) T
g) T
h) F
I) F
j) F
k) F
l) F
Explanation:
The w/v concentration is obtained from, mass/volume. Hence;
%w/v= 50/1000= 5%
In the %w/w we have;
25g/100 g = 25% w/w
In combustion reaction, energy is given out hence it is exothermic.
Neutralization reaction yields a salt and water
% by mass of carbon is obtained from;
8× 12/114 × 100 = 84.1%
All the ionic substances mentioned have very low solubility in water.
One mole of a substance contains the Avogadro's number of each atom in the compound.
There are two iron atoms so one mole contains 2× 55.85 g of iron.
Some sulphates such as BaSO4 are insoluble in water.
Halides are soluble in water hence NaI is soluble in water.
The equation does not balance with the given coefficients because the number of atoms of each element on both sides differ.
The equation represents a decomposition of calcium carbonate as written.