Answer:
I believe the answer is D.
Explanation:
Protons are found inside the nucleus so are neutrons. Electrons are found outside the nucleus.
To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s
Answer:
b. a large elliptical galaxy
Explanation:
In elliptical galaxies the stars are grouped in an elliptical shape, it has a low quantity of gas and dust in comparison to spiral galaxies, and its stars belong to an old population, there is not new stellar formation in it.
The stars orbit in a messy way which made to believe that they form from the merger of galaxies.
They are also really massive (around
solar masses).
The most massive and luminous can be found in the center of cluster of galaxies.
The correct formula for calculating the tangential speed of an orbiting object is V(t)=wr.
V(t)= Tangential Speed
w= Angular Velocity
r= Radius of the Path
Hope this helps.
Answer: -4.4 m/s
Explanation:
This problem can be solved by the Conservation of Momentum principle, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the child
is the initial velocity of the child
is the mass of the adult
is the initial velocity of the adult (it is sitting still)
is the final velocity of the child
is the final velocity of the adult
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
Finally:
This means the velocity of the child is in the opposite direction