If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
<h3>How to calculate volume?</h3>
The volume of a gas at STP can be calculated using the direct proportion method.
According to this question, 50.75 g of a gas occupies 10.0 L at STP, then 129.3g of the same gas will occupy the following:
= 129.3 × 10/50.75
= 25.48L
Therefore, if 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
The incoming and outgoing energy at the Earth’s surface must balance. Or in other words, the flow of energy into the atmosphere must be balanced by an equal flow of energy out of the atmosphere and back to space.<span>
Earth's Energy balance describes how the incoming energy from the sun is used and returned to space. All </span>of the energy entering earth’s atmosphere comes from the sun. Half of it is absorbed by the earth’s surface i.e. the land and oceans, 30% is directly reflected back to space by clouds and 20% is absorbed by the atmosphere and clouds.<span>Earth's </span>actual<span> average global temperature is around 14° C (57 F).</span>
Answer:
A)
1. Reaction will shift rightwards towards the products.
2. It will turn green.
3. The solution will be cooler..
B) It will turn green.
Explanation:
Hello,
In this case, for the stated equilibrium:

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:
A)
1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.
2. The formation of the green complex is favored, therefore, it will turn green.
3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.
B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.
Regards.
Answer:
There is two iron atoms.
Explanation:
The formula iron oxide is Fe2O3 F e 2 O 3 therefore there would be two. Hope this helps. :)
D. a compound can only be separated into its components by chemical means