1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
3 years ago
12

25.0 g of mercury is heated from 25°C to 155°C, and absorbs 455 joules of heat in the

Physics
1 answer:
anastassius [24]3 years ago
5 0

Answer:

0.048J/g°C

Explanation:

Given parameters:

Mass of Mercury  = 25g

Initial temperature  = 25°C

Final temperature  = 155°C

Amount of heat absorbed  = 455J

Unknown:

Specific heat capacity of mercury  = ?

Solution:

To solve this problem, we use the expression below:

      Q  = m x C  x Δt

Q is the heat absorbed

m is the mass

C is the unknown specific heat capacity

Δt is the change in temperature;

          455  = 25 x C x (155  - 25)

          455  = 25 x C x 130

             C  = 0.048J/g°C

You might be interested in
How does using heat as a catalyst affect a chemical reaction?
Goryan [66]
The catalyst lowers the activation energy.
6 0
2 years ago
A family car has a mass of 1400 kg. In an accident it hits a wall and goes from a speed of 27 m/s to a standstill in 1.5 seconds
horrorfan [7]

Answer:

The force has been reduced by 8018 N

Explanation:

The impulse exerted on the car during the crash is equal to the product of the force exerted and the duration of the collision, and it is also equal to the change in momentum of the car. So we can write:

F\Delta t = m\Delta v

where:

F is the force exerted on the car

\Delta t is the duration of the collision

m = 1400 kg is the mass of the car

\Delta  v=-27 m/s is the change in velocity of the car

We can re-write the equation as

F=\frac{m\Delta v}{\Delta t}

In the 1st collision, the time is 1.5 seconds, so the force is

F_1=\frac{(1400)(-27)}{1.5}=-25,200 N

In the 2nd collision, the time is increased to 2.2 seconds, so the force is

F_2=\frac{(1400)(-27)}{2.2}=-17,182 N

Therefore, the force has been reduced by:

F_2-F_1=-17,182-(-25,200)=8018 N

4 0
4 years ago
Read 2 more answers
Elements from opposite sides of the periodic table tend to form ________.
Ivenika [448]
Ionic compounds is your answer. What happens is one atom donates electron(s) to the other atom, making one positive and the other negative. The opposite atoms attract, forming an ionic bond. 

Hope this helps! :)
4 0
3 years ago
The driver must stop and remain stopped to let a pedestrian cross at a crosswalk when the pedestrian is _____________.
RSB [31]

Answer: the correct option is B ( on the half of the road that the vehicle is traveling).

Explanation: according to Georgia Code About Pedestrians; The driver must stop and remain stopped to let a pedestrian cross at a crosswalk when the pedestrian is

on the half of the road that the vehicle is traveling.

4 0
3 years ago
Read 2 more answers
A uniform beam with mass M and length L is attached to the wall by a hinge, and supported by a cable. A mass of value 3M is susp
Jobisdone [24]

Answer:

The tension is  T= \frac{11}{2\sqrt{3} } Mg

The horizontal force provided by hinge   Fx= \frac{11}{4\sqrt{3} } Mg

Explanation:

   From the question we are told that

          The mass of the beam  is   m_b =M

          The length of the beam is  l = L

           The hanging mass is  m_h = 3M

            The length of the hannging mass is l_h = \frac{3}{4} l

            The angle the cable makes with the wall is \theta = 60^o

The free body diagram of this setup is shown on the first uploaded image

The force F_x \ \ and \ \ F_y are the forces experienced by the beam due to the hinges

      Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero

     So

           \sum F =0

Now about the x-axis the moment is

              F_x -T cos \theta  = 0

     =>     F_x = Tcos \theta

Substituting values

            F_x =T cos (60)

                 F_x= \frac{T}{2} ---(1)

Now about the y-axis the moment is  

           F_y  + Tsin \theta  = M *g + 3M *g ----(2)

Now the torque on the system is zero because their is no rotation  

   So  the torque above point 0 is

          M* g * \frac{L}{2}  + 3M * g \frac{3L}{2} - T sin(60) * L = 0

            \frac{Mg}{2} + \frac{9 Mg}{4} -  T * \frac{\sqrt{3} }{2}    = 0

               \frac{2Mg + 9Mg}{4} = T * \frac{\sqrt{3} }{2}

               T = \frac{11Mg}{4} * \frac{2}{\sqrt{3} }

                   T= \frac{11}{2\sqrt{3} } Mg

The horizontal force provided by the hinge is

             F_x= \frac{T}{2} ---(1)

Now substituting for T

              F_{x} = \frac{11}{2\sqrt{3} } * \frac{1}{2}

                  Fx= \frac{11}{4\sqrt{3} } Mg

4 0
3 years ago
Other questions:
  • HOW FAR CAN A PERSON RUN IN 10 MINUTES AT A SPEED OF 260M/MIN
    14·1 answer
  • What is different about the different parts of the electromagnetic spectrum
    13·1 answer
  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The
    10·1 answer
  • Some of the earliest work on ________ was conducted by Faraday.
    15·2 answers
  • Four charges of magnitude +q are placed at the corners of a square whose sides have a length d. What is the magnitude of the tot
    12·1 answer
  • Can someone please illustrate how the refracted ray will look like?
    6·1 answer
  • Which elements listed below are most likely to form anions? Select all that apply. Lithium (Li) Calcium (Ca) Sulfur (S) Fluorine
    11·1 answer
  • Match the terms to their descriptions.
    9·1 answer
  • If a net force is acting on an object, then the object is definitely
    9·1 answer
  • U= (-5,3) find the magnitude of u. please help me
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!