Answer:
It’s when two different elements in a compound get switched
Explanation:
The final volume V₂=4.962 L
<h3>Further explanation</h3>
Given
T₁=20 + 273 = 293 K
P₁= 1 atm
V₁ = 4 L
T₂=100+273 = 373 K
P₂=780 torr=1,02632 atm
Required
The final volume
Solution
Combined gas law :
P₁V₁/T₁=P₂V₂/T₂
Input the value :
V₂=(P₁V₁T₂)/(P₂T₁)
V₂=(1 x 4 x 373)/(1.02632 x 293)
V₂=4.962 L
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :

Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we identify the limiting reactant by computing the available moles of ethane and the moles of ethane consumed by 60.0 grams of oxygen:

Thus, we notice there are less available moles, for that reason, the ethane is the limiting reactant. Finally, we can compute the produced moles of water by:

Best regards.
Answer:
C
Explanation:
it breaks down a simple sugar into a type of energy their cells can use