Electronegativity measures how much an atom likes to pull electrons away from another one. Ionization energy measures how much an atom doesn't want to lose electrons. As an atom that wants to gain electrons will clearly not want to lose electrons, these trends are basically identical.
Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)
beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.
Answer: The hydroxide concentration of this sample is 
Explanation:
When an expression is formed by taking the product of concentration of ions raised to the power of their stoichiometric coefficients in the solution of a salt is known as ionic product.
The ionic product for water is written as:
![K_w=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
![7.7\times 10^{-14}=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=7.7%5Ctimes%2010%5E%7B-14%7D%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
As ![[H^+]=[OH^-]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BOH%5E-%5D)
![2[OH^-]=7.7\times 10^{-14}](https://tex.z-dn.net/?f=2%5BOH%5E-%5D%3D7.7%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=3.85\times 10^{-7}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.85%5Ctimes%2010%5E%7B-7%7D)
Thus hydroxide concentration of this sample is 
<span>1.54 x 10^5 mg
The atomic weight of nickel is 58.6934
Since you have 2.63 moles, the mass will be
2.63 * 58.6934 = 154.3636 grams.
Multiply by 1000 to get milligrams
154.3636 * 1000 = 154363.6 g
Convert to scientific notation
1.543636 x 10^5
Look at the available options and see what matches.
3.56 x 10^5 mg ; Nope, way too big
1.54 x 10^5 mg; Matches to the number of significant figures given.
2.23 x 10^4 mg; Nope, way too small
129 mg; Nope, way too small.</span>