Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.
Answer:
Friction, normal force, and weight
Explanation:
If the book slows down, it means that there must be friction acting in the opposite direction of the direction the book is moving in.
Weight is caused by the gravitational pull of the Earth on the book, and normal force is the table pushing the book up because the book is pushing down on the table (3rd law.)
Note that weight and normal force is not the 3rd law action-reaction pair. The pair is the force of the book on the table and the force of the table on the book.
D, Mercury as a weaker gravitational pull! Due to mercury being farther from the sun and it being a smaller planet it has a weaker pull
Answer:
The Answer is D!
Explanation:
I checked it on Khan Academy.
Solution :
The motion in the y direction.
The time taken by the toy rocket to hit the ground,

S = distance travelled = 30 m
u = 0 m/s
a = 
t= time in seconds
Therefore, 
t = 2.47 sec
Now motion in the x direction,
u = 12 m/sec

Upon integration 'v' with respect to 't'

Once again integrating with respect to t,


= 0.0176+29.64
= 29.65 m
Therefore, the toy rocket will hit the ground at 29.65 m from the building.