Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program
Answer: it would overload
Explanation:
Answer:
The difference of head in the level of reservoir is 0.23 m.
Explanation:
For pipe 1

For pipe 2

Q=2.8 l/s
![Q=2.8\times 10^{-3]](https://tex.z-dn.net/?f=Q%3D2.8%5Ctimes%2010%5E%7B-3%5D)
We know that Q=AV




head loss (h)

Now putting the all values

So h=0.23 m
So the difference of head in the level of reservoir is 0.23 m.
Answer:
Determine the added thrust required during water scooping, as a function of aircraft speed, for a reasonable range of speeds.= 132.26∪
Explanation:
check attached files for explanation
Answer:
The following statements are true:
A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction
C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface
E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.
Select ALL statements that are TRUE
B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant
D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed
Explanation: