Answer:
4.29 millimeters
Explanation:
Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

The frequency of the waves emitted by this bat is:

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:

Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer: Stars are bright and have the ability to emit lights of various wavelength. The color of a star plays a significant role. It helps us in determining its temperature. It ranges from reddish color to a bluish-white color. A red color star indicates that the star is of low temperature, whereas a bluish-white star indicates that the star is of high temperature.