Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.
Answer:
chloroplasts
Explanation:
Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth.
Answer:
upward
Explanation:
In the electromagnetic system of force if the direction of motion of proton does not changes it means that the electric and magnetic forces are such a ways that they are cancelling each other's effect.
Since, electric field lines will exert a force on the proton to the west, hence, the magnetic force must force it to the east. It is well known that magnetic force acts perpendicular to the direction of magnetic field. magnetic field should point upward direction.
Answer: it will move to the left
Explanation: i remeber doing this