Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>
Answer:
Data supports significantly because we can use the testing(depending sample) before and after we use the same object to test the hypothesis.
Answer:
Carbon and Oxygen, Argon and Helium.
Explanation:
noble gases have full outer shells of electrons, and so cannot share other atoms' electrons to form bonds. sodium and chlorine form an ionic bond.
Answer:
Mass of
produced = 32 g
Explanation:
Calculation of the moles of
as:-
Mass = 82.4 g
Molar mass of
= 122.55 g/mol
The formula for the calculation of moles is shown below:
Thus,
From the reaction shown below:-

2 moles of potassium chlorate on reaction forms 3 moles of oxygen gas
So,
0.67237 moles of potassium chlorate on reaction forms
moles of oxygen gas
Moles of oxygen gas = 1 mole
Molar mass of oxygen gas = 32 g/mol
<u>Mass of
produced = 32 g</u>
(B.Hallow bones because bones are inside the body