C. Cello playing music at a concert
Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C = 
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
![K = \frac{[C]}{[A][B]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%7D%7B%5BA%5D%5BB%5D%7D)
where
K is given as ; 78.2 atm-1.
So, we have:
![78.2=\frac{[0.0530-x]}{[x][x]}](https://tex.z-dn.net/?f=78.2%3D%5Cfrac%7B%5B0.0530-x%5D%7D%7B%5Bx%5D%5Bx%5D%7D)


Using quadratic formula;

where; a = 78.2 ; b = 1 ; c= - 0.0530
=
or 
=
or 
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:

where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???

V = 1.64604
V ≅ 1.65 L
In general, The more valence electrons a metal has, the stronger its metallic bonds will be because Boron is a metalloid and is ionically bonded.it is too electronegative to release its valence electrons for metallic bonding.As a result, their valence electrons feel a stronger pull from the nucleus (a greater effective nuclear charge) and are less easily released for metallic bonding.
Answer:
mass and speed
Explanation:
the motion of an object depends on how fast it's travelling and also how much mass it has
Kinetic energy if it's based on temperature but potential energy is talking in terms of entropy