Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
It is calculated that a)The angular velocity of the wheel is 272.13 rad/s,
b)On the edge of the grinding wheel, the linear speed is 47.62 m/s,
and c) On the edge of the grinding wheel, the acceleration is 12958.08 m/s².
Calculation of angular velocity, linear speed & acceleration:
Provided that,
the diameter of the wheel = 0.35 m
So, the radius, r = 0.35/2 = 0.175 m
As 1 revolution = 2π rad
(a)the angular velocity, ω = 2600 rpm =
rad/s
⇒ω = 272.13 rad/s
So, the angular velocity is 272.13 rad/s.
(b)The linear speed, v = r * ω
⇒v = 0.175 * 272.13
⇒v= 47.62 m/s
(c)The angular acceleration, 
⇒
= 12958.08 m/s²
Learn more about angular velocity here:
brainly.com/question/13649539
#SPJ1
Answer:5.21 N
Explanation:
Given
B=5.210 T
I=2 A
L=0.5 m
Given Wire is perpendicular to Magnetic field




F=5.210 N
as 1 Tesla =1 N/A/m
Answer:
Inductive reactance is 125.7 Ω
Explanation:
It is given that,
Inductance, 
Voltage source, V = 15 volt
Frequency, f = 400 Hz
The inductive reactance of the circuit is equivalent to the impedance. It opposes the flow of electric current throughout the circuit. It is given by :




So, the inductive reactance is 125.7 Ω. Hence, this is the required solution.